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Abstract—This work develops a continuous sign language (SL)
recognition framework with deep neural networks, which directly
transcribes videos of SL sentences to sequences of ordered gloss
labels. Previous methods dealing with continuous SL recognition
usually employ hidden Markov models with limited capacity to
capture the temporal information. In contrast, our proposed
architecture adopts deep convolutional neural networks with
stacked temporal fusion layers as the feature extraction module,
and bi-directional recurrent neural networks as the sequence
learning module. We propose an iterative optimization process
for our architecture to fully exploit the representation capability
of deep neural networks with limited data. We first train the
end-to-end recognition model for alignment proposal, and then
use the alignment proposal as strong supervisory information
to directly tune the feature extraction module. This training
process can run iteratively to achieve improvements on the
recognition performance. We further contribute by exploring
the multimodal fusion of RGB images and optical flow in
sign language. Our method is evaluated on two challenging SL
recognition benchmarks, and outperforms the state-of-the-art by
a relative improvement of more than 15% on both databases.

Index Terms—continuous sign language recognition, sequence
learning, iterative training, multimodal fusion.

I. INTRODUCTION

S IGN language (SL) is commonly known as the primary
language of deaf people, and usually collected or broad-

cast in the form of video. SL is often considered as the most
grammatically structured gestural communications [1]. This
nature makes SL recognition an ideal research field for de-
veloping methods to address problems such as human motion
analysis, human-computer interaction (HCI) and user interface
design, and makes it receive great attention in multimedia and
computer vision [2], [3], [4].

Typical SL learning problems involve isolated gesture clas-
sification [3], [5], [6], [7], sign spotting [8], [9], [10], and
continuous SL recognition [11], [12], [13]. Generally speak-
ing, gesture classification is to classify isolated gestures to
correct categories, while sign spotting is to detect predefined
signs from continuous video streams, with precise temporal
boundaries of gestures provided for training detectors. Differ-
ent from these problems, continuous SL recognition is to tran-
scribe videos of SL sentences to ordered sequences of glosses
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Fig. 1. Iterative training process in our approach. The end-to-end trained full
architecture provides alignment proposals, and the feature extractor is further
tuned to learn the matching of video segments and gestural labels.

(here we use “gloss” to represent a gesture with its closest
meaning in natural languages [1]), and the continuous video
streams are provided without prior segmentation. Continuous
SL recognition concerns more about learning unsegmented
gestures of long-term video streams, and is more suitable for
processing continuous gestural videos in real-world systems.
Its training also does not require an expensive annotation on
temporal boundary for each gesture. Recognizing SL indicates
simultaneous analysis and integration of gestural movements
and appearance features, as well as disparate body parts [1],
and therefore probably using a multimodal approach. In this
paper, we focus on the problem of continuous SL recognition
on videos, where learning the spatiotemporal representations
as well as their temporal matching for the labels is crucial.

Many studies [11], [14], [15], [16] have made their efforts
on representing SL with hand-crafted features. For example,
hand and joint locations are used in [11], [17], local binary
patterns (LBP) is used in [16], histogram of oriented gradients
(HOG) is utilized in [15], and its extension HOG-3D is applied
in [11]. Recently, deep convolutional neural networks have
achieved a tremendous impact on related tasks on videos,
e.g. human action recognition [18], [19], [20], gesture recog-
nition [6] and sign spotting [9], [10], and recurrent neural
networks (RNNs) have shown significant performance on
learning the temporal dependencies in sign spotting [4], [21].
Several recent approaches taking advantage of neural networks
have also been proposed for continuous SL recognition [12],
[13], [22]. In these works, neural networks are restricted
to learning frame-wise representations, and hidden Markov
models (HMMs) are utilized for sequence learning. However,
the frame-wise labelling adopted in [12], [13], [22] is noisy
for training the deep neural networks, and HMMs might be
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hard to learn the complex dynamic variations, considering their
limited representation capability.

This paper therefore develops a recurrent convolutional
neural networks for continuous SL recognition. Our proposed
neural model consists of two modules for spatiotemporal
feature extraction and sequence learning respectively. Due
to the limited scale of the datasets, we find an end-to-end
training cannot fully exploit the deep neural network of high
complexity. To address this problem, we investigates an iter-
ative optimization process (Fig. 1) to train our recurrent deep
neural architecture effectively. We use gloss-level gestural
supervision given by forced alignment from end-to-end system
to directly guide the training process of the feature extractor.
Afterwards, we fine-tune the recurrent neural system with the
improved feature extractor, and the system can provide further
refined alignment for the feature extraction module. Through
this iterative training strategy, our deep neural network can
keep learning and benefiting from the refined gestural align-
ments. The main contributions of our work can be summarized
as follows:

1) We develop our architecture with recurrent convolutional
neural networks of more learning capacity to achieve
state-of-the-art performance on continuous SL recogni-
tion, without importing extra supervisory information;

2) We design an iterative optimization process for training
our deep neural network architecture, and our approach,
with the neural networks better exploited, is proved to
take notable effect on the limited training set in contrast
to the end-to-end trained system;

3) We propose a multimodal version of our framework with
RGB frames and optical flow images, and experiments
present that our multimodal fusion scheme provides bet-
ter representations for the gestures and further improves
the performance of the system.

The remainder of this paper is organized as follows. Sec-
tion II reviews related works on SL recognition. Section III
introduces the formulation of our deep neural network for SL
recognition, and its iterative optimization scheme. Section IV
provides implementation details on our model. Section V
presents the experimental results of the proposed method and
Section VI concludes the paper.

II. RELATED WORK

SL recognition systems on videos usually consist of a
feature extraction module, which extracts sequential repre-
sentations to characterize gesture sequences, and a temporal
model mapping sequential representations to labels.

Many hand-crafted features have been introduced for ges-
ture and SL recognition. These features characterize hand-
shape, appearance and motion cues, by using image pixel
intensity [16], gradients [11], [15], [23] and motion trajectories
or velocities [8], [11], [17]. In recent years, there has been a
growing trend to learn feature representations by deep neural
networks. Wu et al. [24] employ a deep belief network to
extract high-level skeletal joint features for gesture recogni-
tion. Convolutional neural networks (CNNs) [25], [26] and
3D convolutional neural networks (3D-CNNs) [9], [10], [4]

have also been employed to capture visual cues for hand
regions. For instance, Molchanov et al. [4] apply 3D-CNNs
for spatiotemporal feature extraction from video streams on
color, depth and optical flow data. Neverova et al. [9] present
a multi-scale deep architecture on color, depth data and hand-
crafted pose descriptors.

Temporal model is to learn the correspondences between
sequential representations and gloss labels. HMMs are the
most widely used temporal models in SL recognition [10],
[11], [13]. Besides, dynamic time warping (DTW) [16] and
SVMs [27] are also used for measuring similarity between
gestures. Recently, RNNs have been successfully applied to
sequential problems such as speech recognition [28] and
machine translation [29], [30], and some progress has also
been made for exploring the application of RNNs in SL
recognition. Pigou et al. [21] propose an end-to-end neural
model with temporal convolutions and bidirectional recurrence
for sign spotting, which is taken as frame-wise classification
in their framework. However, with only weak supervision in
sentence level, recurrent neural networks are hard to learn to
match the over-length input sequence frame by frame with the
ordered labels. Different from their model, we use temporal
pooling layers to integrate the temporal dynamics before
the bidirectional recurrence. Molchanov et al. [4] employ a
recurrent 3D-CNN with connectionist temporal classification
(CTC) [31] as the cost function for gesture recognition, while
in our experiments, we find that our architecture shows a much
superior performance compared to 3D-CNN model on the SL
recognition benchmarks.

Due to lack of temporal boundaries for the sign glosses
in the image sequences, continuous SL recognition is also a
typical weakly supervised learning problem. There have been
some attempts focusing on the problem of mining gestures
of interest from large amount of SL videos, where signs and
annotations are usually coarsely aligned with considerable
noise. Different from our problem, they usually take more
focus on local temporal dynamics but not long-term depen-
dencies. Buehler et al. [15] propose a scoring function based
on multiple instance learning (MIL) and search for signs of
interest by maximizing the score. Pfister et al. [27] use subtitle
text, lip and hand motion cues to select candidate temporal
windows, and these candidates are further refined using MI-
SVM [32]. Chung and Zisserman [33] use a ConvNet learned
on image encoding representing human keypoint motion for
recognition, and they locate temporal positions of signs via
saliency map by back-propagation.

There have been a few works exploring the problem of
continuous SL recognition. Gweth et al. [34] employ a one-
hidden-layer perceptron to estimate posterior from appearance-
based features, and use the probabilities as inputs to train an
HMM-based recognition system. Koller et al. [12], [13], [25]
adopt CNNs for feature extraction from cropped hand regions
and also use HMMs to model the temporal relationships. As
the amount of training data is not sufficient enough, training
of deep neural networks is inclined to end in overfitting. To
alleviate this problem, Koller et al. [12] embed a CNN within
a weakly supervised learning framework. Weakly labelled
sequence of hand shape annotations are brought in as an ini-
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tialization, to iteratively train CNN and re-estimate hand shape
labels within Expectation Maximization (EM) [35] framework.
Similarly, annotations of finger and palm orientations are also
imported as weakly supervised information to train CNN [25].
In their later works [13], [22], they use the frame-state
alignment, provided by a baseline HMM recognition system,
as frame labelling to train the embedded neural networks. In
contrast with these works [12], [13], [25], [22], our sequence
learning module of recurrent neural networks with end-to-
end training shows much more learning capacity and better
performance for the dynamic dependencies. Besides, instead
of using noisy frame-wise labelling as training targets of
neural networks, we adopt the gloss-level alignment proposal
to train our feature extraction module, which takes more local
temporal dynamics into consideration. Moreover, no extra
supervisory information such as hand shape annotations is
imported in our approach. Notice that the development of such
lexicon requires laborious annotation with expert knowledge,
while our method is free from this limitation.

Different from our previous work [36], we propose a distinc-
tive segment-gloss alignment method to learn from the outputs
of our sequence learning module, and we provide an explicit
illustration for our iterative training scheme, by proving the
training of feature extraction module to be maximizing the
lower bound of the objective function, instead of using an
intuitive approach. We also contribute by investigating more
on the multimodal integration of appearance and motion cues
in this work.

III. METHOD

In this work, our proposed architecture adopts a feature
extraction module composed of a deep CNN followed by
temporal fusion layers, and a sequence learning module using
RNNs with bidirectional long short-term memory (Bi-LSTM)
architecture.

We propose a novel iterative optimization scheme to ef-
fectively train our deep architecture. We use the end-to-end
recognition system to generate alignment proposal between
video segments and gestural labels. Given the large amount
of gestural segments with supervisory labels, we train the
feature extraction module and then fine-tune the whole system
iteratively. An overview of our approach is presented in Fig. 1.
In the remainder of this section, we will first present our model
formulation and then introduce its iterative training strategy.

A. Model Formulation

We use a CNN followed by temporal convolutional and
pooling layers to learn spatiotemporal representations from
input video streams. Letting {xt}Tt=1 be the input video
stream of length T , the employed CNN fCNN transforms
the input sequence into some spatial representation sequence
{rt}Tt=1 = fCNN({xt}Tt=1) with rt ∈ RC , where C is
the feature dimensionality. The feature sequence {rt}Tt=1 is
then processed by stacked temporal convolution and pooling
operations fTemp : R`×C → RD, with temporal stride δ,
receptive field ` and output dimensionality D, to get:

{sk}Kk=1 = fTemp({rt}Tt=1) = (fTemp ◦ fCNN)({xt}Tt=1), (1)

where K = T/δ represents the length of extracted spa-
tiotemporal representation sequence {sk}Kk=1, and we use
fTemp◦fCNN to denote the processing of the proposed feature
extraction module. The feature extraction module transforms
k-th video segments of length ` to representation sk. In
general, we set the receptive field approximate to the length
of an isolated sign. Therefore, we consider the video segments
as approximate “gloss-level”.

One shortcoming of unidirectional RNNs is that the hidden
states are computed only from previous time steps. However
in SL, the gestural performance and meaning is closely related
to its previous as well as succeeding contexts. Therefore, Bi-
LSTMs [37] are employed to learn the complex dynamics
by mapping sequences of spatiotemporal representation to
sequences of ordered labels. Bi-LSTM computes the forward
and backward hidden sequences by iterating the LSTM com-
putation [38] from k = 1 to K and from k = K to 1
respectively:

hf
k, c

f
k = fLSTM−frw(sk,h

f
k−1, c

f
k−1), (2)

hb
k, c

b
k = fLSTM−bck(sk,h

b
k+1, c

b
k+1), (3)

where hf
k, c

f
k denote the hidden state and memory cell of

forward LSTM module fLSTM−frw at the k-th time step, and
hb
k, c

b
k denote those of the backward one fLSTM−bck. This

scheme helps the recurrent neural networks to exploit future
context as well as previous context at the same time. Finally,
the output categorical probabilities of M gloss labels at time
k are computed through a softmax classifier, which takes the
concatenation of hidden states of Bi-LSTM as the input:

zk = softmax(W [hf
k;h

b
k] + b), (4)

where W and b are the weight matrix and bias vector
for the softmax classifier, and we use [·; ·] to represent the
concatenation operation.

We let θ = [θf ;θs] denote the vector of all parameters
employed in the end-to-end recognition system, where θf

and θs denote the parameters of the feature extraction and
sequence learning module respectively. We will introduce our
approach to learning these parameters in the remainder of this
section.

B. Training with CTC Objective Function

Since the video streams are unsegmented in continuous
SL recognition during training, we introduce connectionist
temporal classification (CTC) [31] to solve this transcription
problem. CTC is an objective function originally designed
for speech recognition, requiring no prior alignments between
input and output sequences.

Our recognition system, with θ = [θf ;θs] as the stacked
vector of all its filters, takes video stream x = {xt}Tt=1 as the
input sequence to predict the sequence of gloss labels y. We
add an extra token “blank” to the gloss vocabulary to model the
gestural transitions explicitly. As the categorical probabilities
zk of each gloss (including blank) for segment k has been
normalized by the softmax classifier, we let Pr(m, k|x;θ) =
zmk , which indicates the emission probability of label m at
time step k using the m-th element of zk. In the formulation
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of CTC, the probability of an alignment π = {πk}Kk=1 given
length K is defined as the product at each time step:

Pr(π|x;θ) =
K∏
k=1

Pr(πk, k|x;θ). (5)

The alignments typically include blanks and repeated tokens.
Alignments are mapped into the given target sequence y by
the many-to-one mapping B, with repeated labels and blanks
removed. For example, both the alignment (−, a, a,−, b) and
(−, a, b,−,−) correspond to the target sequence (a, b), where
a, b are gestural labels, and “−” denote the blank label for
gestural transition. Letting V(y) = {π|B(π) = y} represent
all the alignments corresponding to target sequence y, the
probability of the target transcription can be computed by
summing the probabilities of all the alignments corresponding
to it:

Pr(y|x;θ) =
∑

π∈V(y)

Pr(π|x;θ). (6)

Using this computation for Pr(y|x;θ), the CTC objective
function is defined as:

LCTC(θ) = − log Pr(y|x;θ). (7)

The deep neural network for end-to-end SL recognition can
then be trained to minimize the CTC objective function.

The calculation of CTC objective function is solved using
a dynamic programming algorithm described below [31]. A
modified sequence y′ is defined by inserting blanks before
and after every gestural label, to allow for the blank label in
the alignments. Let U = |y| be the number of labels contained
in y, we have U ′ = |y′| = 2U + 1 as the length of y′. We
define the forward variable α(k, u) as the summed probability
of all paths up to time step k and the prefix of y′ with length u.
In the formulation of CTC, note that α(k, u) can be calculated
recursively as:

α(k, u) = Pr(y′u, k|x;θ)
u∑

i=g(u)

α(k − 1, i), (8)

where

g(u) =

{
u− 1 if y′u is blank or y′u−2 = y′u
u− 2 otherwise (9)

with the boundary conditions given in [31], and we have
Pr(y|x;θ) = α(K,U ′ − 1) + α(K,U ′).

C. Learning from Alignments

At this stage, we utilize the alignment proposal given by
the end-to-end tuned system to train the feature extraction
module. To fully exploit the representation capability of the
deep convolutional network θf , here we consider using the
feature extraction module to maximize the objective function:

L(θf) = log Pr(y|x;θf). (10)

As the feature extractor cannot model the long dynamic de-
pendencies, instead of training it directly with CTC objective,
we have:

L(θf) = log Pr(y|x;θf) (11)

= log
∑
π∈A

Pr(y,π|x;θf) (12)

≥
∑
π∈A

Pr(π|x,y;θ∗) log Pr(y,π|x;θf)
Pr(π|x,y;θ∗)

(13)

=
∑
π∈A

Pr(π|x,y;θ∗) log Pr(y,π|x;θf) + const

(14)

= Q(θf) + const, (15)

where A represents all the possible alignments of length K,
θ∗ denotes the parameters of the trained end-to-end mod-
el, and the constant is negative entropy of the distribution
Pr(π|x,y;θ∗) and therefore independent of θf . (13) uses
Jensen’s inequality for the concave function log(·).

Note that given a particular alignment π, the output se-
quence is uniquely determined as B(π). It is easy to find
Pr(y|π,x) = Pr(y|π) = 1(π ∈ V(y)) to represent the
constraint to possible alignments with given target sequence,
where 1(·) represents the indicator function. Then we can
write:

Pr(π|x,y;θ∗) = Pr(π|x;θ∗)
Pr(y|x;θ∗)

· 1(π ∈ V(y)), (16)

and

Pr(y,π|x;θf) = Pr(π|x;θf) · 1(π ∈ V(y)). (17)

Based on the constraint to the alignments, the objective is
formulated as:

L(θf) = log
∑

π∈V(y)

Pr(π|x;θf), (18)

and the lower bound is further transformed into:

Q(θf) =
∑

π∈V(y)

Pr(π|x;θ∗)
Pr(y|x;θ∗)

log Pr(π|x;θf). (19)

In general, we will not be able to optimize all possible
alignments which are corresponding to y. As the converged
end-to-end system typically outputs single alignment with
dominant probability on training examples, we select the
alignment in V(y) with the highest probability estimation as
the proposal, and use the feature extraction module to learn
from it instead. When alignment π̂ take a dominant probability
among all the possible alignments in V(y), we can see that:

Q(θf) ≈ Pr(π̂|x;θ∗)
Pr(y|x;θ∗)

log Pr(π̂|x;θf), (20)

where we make an approximation to Q(θf) by choosing the
alignment with highest probability to represent the integration
over possible alignments. The proposed alignment is given by:

π̂ = argmax
π∈V(y)

Pr(π|x;θ∗). (21)
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We define α̂(k, u) as the maximum path probability up to
time step k and the prefix of y′ with length u, and we have
initial conditions as:

α̂(k, 0) = 0, 1 ≤ k ≤ K, (22)

α̂(1, u) =

{
Pr(y′u, 1|x;θ

∗) u = 1, 2
0 2 < u ≤ U ′ . (23)

Similar to (8), we can calculate α̂(k, u) recursively as:

α̂(k, u) = Pr(y′u, k|x;θ
∗) max
i∈{i|g(u)≤i≤u}

α̂(k − 1, i). (24)

With the formulation of CTC and all the notations used
before, we develops following algorithm to find the proposed
alignment π̂ = {π̂k}Kk=1.
Input: α̂(k, u), 1 ≤ k ≤ K, 1 ≤ u ≤ U ′
Output: π̂

1: γ ← argmaxi∈{U ′−1,U ′} α̂(K, i).
2: π̂K ← y′γ .
3: for k = K − 1 to 1 do
4: γ ← argmaxi∈{i|g(γ)≤i≤γ} α̂(k, i).
5: π̂k ← y′γ .
6: end for
7: return π̂

We note that the optimization of (20) contributes to the max-
imization of original objective L(θf) in (18), by maximizing
the weighted likelihood of alignment proposal with the highest
estimated probability.

As the bidirectional recurrence for sequence learning takes
full context into consideration, we assume that the alignment
proposal π̂ typically gives a reliable estimation of temporal
localization for most signs, and the spatiotemporal represen-
tation from each segment should have strong correspondence
to the segment label given by the alignment proposal.

Based on these assumptions, letting S be the training set as
the collection of video stream with its annotation (x,y), the
objective function for feature extraction module training can
be transformed from (20) to:

Lalign(θ
f) =

∑
(x,y)∈S

ρ(x,y)

K∑
k=1

log Pr(π̂k, k|x,θf), (25)

where ρ(x,y) = Pr(π̂|x;θ∗)/Pr(y|x;θ∗), and we present
the probability of alignment proposal as the product of e-
mission probabilities at each segment. To learn the feature
extraction module from alignment proposal, we partition the
video sequences to segments with one supervisory gestural
label for each, according to the dominant alignment proposal.

The objective function also puts more weights ρ(x,y) to
training examples with estimated alignments of more con-
fidence. In practice, we extend the feature extractor with a
softmax layer and tune the parameters by maximizing Lalign.

After tuning the feature extractor parameters θf from seg-
ment samples provided by alignment, we continue to train
the full deep neural architecture with the improved feature
extraction module. The objective function of CTC is employed
to fine-tune the recognition system, and the fine-tuned system
can give further improved alignments. This training procedure
can run iteratively until no improvement is observed in the
performance of the system.

IV. MODEL IMPLEMENTATION

In this section, we provide more implementation details of
our approach.

A. Model Design

The proposed deep neural architecture consists of a deep
CNN followed by temporal operations for representation learn-
ing, and Bi-LSTMs for sequence learning.

For experiments with modalities from dominant hands as
the inputs, we build the deep convolutional network based on
the VGG-S model [39] (from layer conv1 to fc6), which
is memory-efficient and shows competitive classification per-
formance on ILSVRC-2012 dataset [40]. The input images,
which are the region of dominant hands cropped from original
frames, are resized to 101 × 101 in dimension, and they are
then transformed to 1024-dimensional feature vectors through
the fully connected layer fc6.

The stacked temporal convolution and pooling layers are
utilized to generate spatiotemporal representation for each
segment. Note that it is hard to learn the extremely long
dynamic dependencies with no temporal pooling, while a
coarse temporal stride will lead to loss of temporal details.
We select the temporal stride δ to ensure sufficient over-
lapping between neighboring segments, as well as pool the
representation sequence to a moderate length. For videos in
RWTH-PHOENIX-Weather database, we set ` = 16 frames,
δ = 4 frames, and we set ` = 25 frames, δ = 9 frames
in experiments on SIGNUM corpus. In the feature extraction
module, rectifier and max-pooling are adopted for all the non-
linearity and pooling operations.

We use Bi-LSTMs with 2× 512 dimensional hidden states
and peephole connections to learn the temporal dependencies.
The hidden states are then fed into the softmax classifier, with
the dimension equal to the vocabulary size.

We also investigate the performance of our training
framework with full video frames as the inputs. We use
GoogLeNet [41] and also VGG-S net as the deep convolutional
network in our feature extractor, and we adopt two stacked
Bi-LSTMs to build the sequence learning module. Due to
the limitations on GPU memory to fit in the whole system,
we fix the parameters of CNN at the end-to-end stage and
only tune the sequence learning module. The video frames
are resized to 224×224 as the inputs of CNN, transformed to
feature vectors after the average pooling layer, and then fed
into the temporal fusion layers. The employed GoogLeNet
is initialized with the weights pretrained on ILSVRC-2014
dataset [40], and we initialize the feature extractor by fitting it
to the alignment proposal generated by the model end-to-end
trained on dominant hand images.

B. Multimodal Fusion

To incorporate the appearance and motion information, we
also take color image and optical flow for dominant hand
regions as the inputs of our deep neural architecture. We adopt
sum fusion approach at the conv5 layer for fusing the two
stream networks. It computes element-wise sum of the two
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Fig. 2. Deep neural architecture for RGB and optical flow modalities of dominant hands. We take the model developed on RWTH-PHOENIX-Weather 2014
database for example, where T is the length of the input video sequence, K = T/4 is the sequence length after temporal pooling, and M = 1296 is the
vocabulary size (including blank). Each displayed feature map is annotated with its dimensionality respectively. Parameters for different modalities are not
shared in this architecture.

feature maps at the same spatial location and channel for the
fusion. Our intention here is to put appearance and motion cues
at the same spatial position in correspondence, without intro-
ducing extra filters in order to join the feature maps together.
The sum fusion approach also shows a decent performance
on the task of action recognition in video [42] compared to
other spatial fusion methods. Our end-to-end architecture for
SL recognition from dominant hands is depicted in Fig. 2.
Note that parameters for different modalities are not shared
before the sum fusion.

In experiments on multiple modalities of full frames, we
adopt fusion of color and optical flow at two layers (af-
ter inception_3b and inception_4c in GoogLeNet)
similar to [42]. Fig. 3 shows the fusion structures we build
for experiments on recognition from multiple modalities
of full frames. We also adopt the auxiliary classifiers as
in GoogLeNet by adding to temporal fusion layers after
inception_4a and inception_4d during the phase of
feature extractor fine-tuning.

C. Implementation Details
In our experiments, we use DeepFlow method [43] for

optical flow computation. For dominant hand locations which
are not provided in the original databases, we adopt the
faster R-CNN framework [44] to detect the dominant hand
in each video frame. To increase the variability of the training
examples, we add random temporal scaling up to ±20% to
video streams, intensity noises [45] of standard deviation of
0.2 to the RGB modal, and randomly jitter the height and
width of each input image by ±20%. RGB images and optical
flows are fed into the neural network with the mean image
subtracted. We train the full architecture for 100 epochs using
Adam approach [46] with learning rate of 5 × 10−5 and a
mini-batch size of 2.

For training the feature extraction module from alignment
proposals, we split the pairs of segments and gestural labels

Fig. 3. Fusion structure for RGB and optical flow modalities of full frames.
Sum fusion is used after layer inception_3b and inception_4c.
Parameters for different modalities are not shared in this architecture.

into training and validation sets with the ratio of 10 : 1.
We adopt Adam [46] as the stochastic optimization approach
with a fixed learning rate of 5 × 10−5 and a mini-batch size
of 20. The training process of feature extractor is ceased
when Lalign starts to plateau on the validation sets, which
is usually no more than 10 epochs for each iteration. To
improve the generalization of the deep networks, we also
adopt the `2-penalty for the weights of the network layers
with a hyperparameter of 5 × 10−4 to balance the objective
and the regularization when tuning the feature extractor and
the full system. We stop the iterative training procedure until
no performance improvement is observed on validation sets.
During our experiments, the training process usually lasts for
3 to 4 iterations.

Our neural architecture is implemented in Theano [47], and
experiments are ran on NVIDIA Titan X GPUs.

V. EXPERIMENTS

This section reports experiments performed on two bench-
marks for continuous SL recognition to validate our approach.
In Section V-A, we introduce the databases and the experimen-
tal protocol that we follow in the experiments. In the remainder
of this section, we present and analyze our experimental results
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TABLE I
STATISTICS OF RWTH-PHOENIX-WEATHER 2014 AND SIGNUM

SIGNER-DEPENDENT DATABASES

Statistics Phoenix-2014 SIGNUM
Train Dev Test Train Test

# frames 799,006 75,186 89,472 416,620 114,230
duration [hours] 8.88 0.84 0.99 3.86 1.06
# sentences 5,672 540 629 1,809 531
# gestural instances 65,227 5,540 6,504 11,874 2,979
# signers 9 9 9 1 1
vocabulary size 1,231 460 496 455 385
out-of-vocabulary [%] - 0.69 0.69 - 0

on public SL recognition benchmarks, and we compare the SL
recognition performance of our framework with the state-of-
the-arts in Section V-E.

A. Datasets and Experimental Protocol

In this work the experiments are carried out on two publicly
available databases, RWTH-PHOENIX-Weather multi-signer
2014 database [48] and SIGNUM signer-dependent set [14].

SIGNUM database is created under laboratory conditions,
with recording environment (e.g. lighting, background, sign-
er’s position and clothes) carefully controlled. The signer-
dependent subset of SIGNUM corpus contains 603 German
SL sentences for training and 177 for testing, each sentence is
performed by a native signer three times. The training corpus
contains 11, 874 glosses and 416, 620 frames in total, with 455
different gestural categories.

In contrast to SIGNUM corpus, RWTH-PHOENIX-Weather
2014 database is collected from TV broadcasts of weather
forecasts. It contains 5, 672 video sequences for training, with
65, 227 gestural instances and 799, 006 frames in total, per-
formed by 9 signers. Each video sequence is for one German
SL sentence and performed by a single person. The length of
the video sequences ranges from 27 to 300 frames, all at the
frame rate of 25 frames per second (fps). The vocabulary of
all gestural labels (excluding “blank”) is up to 1, 295. RWTH-
PHOENIX-Weather 2014 database is a challenging benchmark
partially due to its multi-signer settings. Besides, the fast hand
motion and blurring in signing also add difficulties to accurate
recognition.

We follow the experimental protocol adopted in [11] to split
the database into training and testing subsets. The statistics for
these two corpora in our experiments are shown in Tabel I.
In Fig. 4, we present some example frames from these two
databases.

To evaluate the experimental performance quantitatively, in
this work we adopt word error rate (WER) as the criterion,
which quantifies the dissimilarity of the predicted sequence
of labels and the ground truth transcription. More precisely,
WER measures the least operations of substitution, deletion
and insertion, at the word level, to transform the predicted
sequence into the ground truth. WER is defined as:

WER =
#sub +#del + #ins

#GT
, (26)

(a)

(b)

Fig. 4. Example frames from the two sign language recognition benchmarks.
(a) RWTH-PHOENIX-Weather 2014 database, (b) SIGNUM database.
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Fig. 5. Training (left) and validation process (right) on RWTH-PHOENIX-
Weather 2014 database with our model (temporal fusion) and 3D-CNN model.
Red curves show the CTC objective value and validation performance for 3D-
CNN model over training epoches, and blue curves are for our approach.

where #sub, #del and #ins denote the number of substitu-
tions, deletions and insertions respectively, and #GT is the
number of labels in the ground truth sequence.

B. Design Choices of Temporal Fusion

Notice that the temporal receptive field ` and stride δ are
important to the temporal fusion of spatial features across
video frames. We compare the performances with different
choices of ` and δ on RWTH-PHOENIX-Weather 2014 and
SIGNUM datasets (see Table II and Table III). We see that
changes in visual inputs and modalities have little influence
on the superiority of a suitable temporal fusion structure. One
possible explanation is that temporal fusion layers generally
focus on capturing temporal integration over different time
steps, while visual inputs and modalities are more about
various spatial properties of gestures, but with closely related
dynamic dependencies. Therefore, a suitable temporal fusion
structure can also be fit for other visual inputs with close
temporal structures. We also observe that overlength temporal
sequences with too small δ leads to the failure of the optimiza-
tion of CTC, and temporal fusion with larger δ also results in
the performance deterioration, which can be explained by the
loss of temporal details.
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Let Ck denote a temporal convolutional layer with 1024-
dimensional filters of size k. Pk denotes a temporal max-
pooling layer with stride k and kernel size k. Due to the con-
sistent superior performances, we set the temporal fusion lay-
ers as C5-P2-C5-P2 for RWTH-PHOENIX-Weather 2014
database, and C5-P3-C5-P3 for SIGNUM database in our
experiments. For these two benchmarks, the selected strides
make the feature sequence before Bi-LSTMs about 4 times as
long as label sequence on average. As for receptive field `,
we suggest that it should be better to cover the approximate
length of single gestures in corpus, so that feature extractor
can learn the representation for gestures with complete “gloss-
level” information.

We also implement a recurrent 3D-CNN architecture [4] for
the continuous SL recognition task. The recurrent 3D-CNN
model reaches WER of 39.64% on development set and WER
of 39.50% on test set. In contrast, our end-to-end training
architecture achieves WER of 32.21% on development set
and 32.70% on test set. Fig. 5 shows a typical example of
the training process. Our approach with temporal fusion con-
verges more quickly over training epochs, and also achieves
a much better performance on validation set than 3D-CNN
architecture. This result suggests that our proposed model is a
more suitable structure than 3D-CNN models on this corpus.

C. Recognition with Multimodal Cues
In this section, we present our experimental results with

multimodal setups on both databases. On RWTH-PHOENIX-
Weather 2014 database (see Table IV), the multimodal fusion
scheme brings complementary information to the appearance
inputs, and shows a consistently superior performance in
contrast to learning from single modality for all network
configurations. Moreover, the performances of our neural
networks, for all different inputs of modality and network
configurations, are improved by iterative training scheme con-
sistently, although the last training iteration sometimes sees a
slight decrease in performance. Among all the experimental
configurations on RWTH-PHOENIX-Weather 2014 database,
Our system, with multimodal fusion scheme and GoogLeNet
architecture in feature extraction module, presents the best
performance, achieving a WER of 23.10% on development set
and 22.86% on test set, which benefits from both multimodal
fusion and iterative training, with relative improvements of
6.87% and 6.08% on test set respectively.

In Table V we can observe similar system performances
on SIGNUM database. Our deep neural networks consistently
benefit from the proposed iterative training scheme as well as
multimodal fusion. The system with architecture of VGG-S
net and modal fusion shows the best performance, with WER
of 2.80%, where the multimodal integration approach and the
iterative training brings improvements of 1.13% and 0.37% in
WER respectively.

To demonstrate the effectiveness of our proposed method
qualitatively, some recognition results with different settings
are shown in Fig. 6. We can see that both our multimodal
fusion design and iterative training strategy improve the
recognition performance and help to provide more precise
predictions to the input videos.

color
PAUSE    0.672
X-rechts  0.107
MÄDCHEN  0.045
STUDENT  0.045
NACH-HAUSE  0.031

color + opt. flow
STUDENT  0.596
HEUTE  0.044
ICH  0.023
X-rechts  0.014
DEIN  0.013

color
PAUSE    0.886
X-rechts  0.018
NACH-HAUSE  0.008
BIS  0.006
MITTAG  0.006

color + opt. flow
PAUSE  0.861
EUROPA  0.084
KOMMEN-dahin 0.012
WARUM  0.011
MITTAG  0.006

color
TIERE    0.869
JUNGE  0.030
STADT  0.006
SCHNEE  0.006
SPIELEN  0.005

color + opt. flow
BANK-geld  0.404
TIERE  0.273
DA-du  0.166
BUCHEN  0.015
X-rechts  0.009

color
TIERE    0.685
STADT  0.020
ZEUG-raum  0.015
ARZT  0.014
MEIN  0.011

color + opt. flow
TIERE  0.961
DA-du  0.020
VERKEHR  0.010
AUFPASSEN-auf  0.001
MARKT  0.001

(a)

(b) (c)

Fig. 7. Comparison of gesture classifiers trained from alignments with
different modalities. (a) Classification results on some unseen gestural se-
quences. We list top-5 predictions of classifiers trained with color modality and
multimodal fusion respectively, and annotate the ground truth label for each
sequence in red color. We see that both classifiers can give correct labels on
“PAUSE” and “TIERE”. However, the classifier learning from color modality
only, fails to discriminate gestures with similar hand shape but different types
of motion, e.g. “BANK-geld” and “TIERE”. (b)(c) The visualization of flow
fields. Orientation and magnitude of flow vectors are represented by hue and
saturation respectively.

D. Gesture Classification with Feature Extractor

At the stage of learning from alignments, we use the
feature extraction module with a softmax classifier to learn
the aligned gestural labels from video segments. To prove
the interpretability of this training process, in this section we
directly evaluate our trained gesture classifiers on the task of
isolated gesture recognition without finetuning.

We evaluate our classifier on the signer-dependent subset
of isolated gestures in SIGNUM database, which contains
1, 350 utterances of 450 classes. The isolated gestures are all
performed by the same signer as the SL sentences. We use
the classifier with temporal convolution and pooling layers to
process the image stream, and simply take the mean pooling
of the predictions for testing.

It is interesting to find that our classifier with color image
modal shows a 63.70% top-1 accuracy and a 86.37% top-
5 accuracy, and the classifier with fusion of color and optical
flow achieves 75.70% for top-1 accuracy and 91.93% for top-5
accuracy on the 450 gestural classes. This result illustrates that
our sequence learning module with bidirectional recurrence
can provide reliable alignments between frames and gestural
labels, thus we can get decent gesture classifier by training
with feature extraction module on this supervision. Notice
also that our classifier with multimodal integration presents
a higher classification accuracy. In Fig. 7, we can find that the
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TABLE II
COMPARISON OF DEV WERS FOR DIFFERENT TEMPORAL CONVOLUTION AND POOLING PARAMETERS ON RWTH-PHOENIX-WEATHER 2014

DATABASE

Temporal Layers ` δ
Right hand Full frame

color opt. flow color opt. flow
C5-P2 6 2 -1 - - -
C3-P2-C3-P2 10 4 35.02±0.042 41.64±0.24 33.93±0.13 45.62±0.36
C5-P2-C5-P2 16 4 32.21±0.22 39.88±0.24 33.27±0.20 44.51±0.26
C3-P2-C3-P2-C3-P2 22 8 37.17±0.23 43.64±0.05 37.15±0.25 46.57±0.25
1 The network fails to optimize the CTC objective function in this case.
2 WERs are expressed as percentages, the lower the better.

TABLE III
COMPARISON OF WERS FOR DIFFERENT TEMPORAL CONVOLUTION AND POOLING PARAMETERS ON SIGNUM DATABASE

Temporal Layers ` δ
Right hand Full frame

color opt. flow color opt. flow
C5-P2-C5-P2 10 4 - - - -
C3-P3-C3-P3 17 9 7.99±0.17 24.09±0.05 4.66±0.04 7.24±0.25
C5-P3-C5-P3 25 9 6.95±0.12 19.79±0.19 4.21±0.06 6.68±0.12
C5-P4-C5-P4 36 16 10.57±0.05 21.82±0.07 5.33±0.02 8.13±0.11

groundtruth __ON__  TAG  DANN  SCHAUER  BESONDERS NORD  SPAETER  REGION  KOMMEN  NEU  REGEN  __OFF__

ABER  TROTZDEM  IN-KOMMEND  KOMMEN  REGEN  MEHR  NUR  WEST  REGION  REGEN  OST  GLUECK  KEIN  REGEN

end2end (RGB)

end2end (mul!modal)

itera!ve (mul!modal)

frame samples

groundtruth

end2end (RGB)

end2end (mul!modal)

itera!ve (mul!modal)
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end2end (mul!modal)

itera!ve (mul!modal)
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GRENZE  TEILWEISE  STARK  GEWITTER  REGEN  HEUTE  NACHT  RHEINLAND-PFALZ  IX  BADEN  WUERTTEMBERG  BIS  REGION  THUERINGEN  REGEN

Fig. 6. Recognition results with multiple modalities of full frames on test set. Our architecture with modal fusion and iterative training gives a better prediction
of the gestures. Recognition errors of substitutions and insertions are annotated in red.

classifier learning from complementary modalities, other than
color images only, can make more accurate inference. Fig. 8
further shows an example, where our model using multimodal
fusion scheme, which has better inference performance on
gestural labels, provides a more accurate alignment proposal.

E. Signer Independent Recognition

To evaluate the performance of our approach dealing with
inter-signer variations, we present a signer independent ex-
periment for continuous SL recognition in this section. Using
the same experimental configurations as SI5 corpus in [22],
we remove the video sequences of signer 5 from the training
set, which takes 22.85% off from the whole set, and we
evaluate our trained recognition system only on sequences of

TABLE VI
RECOGNITION DEV/TEST WERS ON SIGNER INDEPENDENT EXPERIMENT

Iteration Dev Test
del / ins WER del / ins WER

0 16.48 / 4.17 53.44±0.54 14.40 / 5.87 53.44±0.37
1 13.77 / 3.66 40.76±0.33 13.01 / 4.07 41.28±0.58
2 13.31 / 4.37 40.50±0.22 12.48 / 3.95 39.94±0.40
3 12.57 / 4.51 39.82±0.15 11.70 / 4.21 39.63±0.47
4 13.22 / 4.48 39.90±0.26 12.70 / 4.47 40.17±0.25
5 12.25 / 4.94 40.04±0.08 12.12 / 4.86 39.52±0.41
6 11.54 / 4.68 40.07±0.22 11.99 / 5.17 39.49±0.47

signer 5 in development and test set. We use the alignments
from our end-to-end architecture trained on color images of



1520-9210 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2018.2889563, IEEE
Transactions on Multimedia

IEEE TRANSACTIONS ON MULTIMEDIA 10

TABLE IV
RECOGNITION DEV/TEST WERS WITH MULTIPLE MODALITIES ON RWTH-PHOENIX-WEATHER 2014 DATABASE

Input Modality Iteration
1 2 3 4

Right hand (VGG-S)
color 32.21±0.22 / 32.70±0.11 31.72±0.08 / 31.51±0.17 31.96±0.02 / 32.15±0.18 -
opt. flow 39.88±0.24 / 39.94±0.05 39.62±0.12 / 38.99±0.37 39.62±0.07 / 39.29±0.24 -
color + opt. flow 31.64±0.06 / 31.40±0.43 31.07±0.09 / 30.78±0.13 31.36±0.17 / 31.18±0.16 -

Full frame (VGG-S)
color 33.27±0.20 / 33.69±0.22 32.34±0.18 / 32.30±0.24 32.65±0.23 / 32.71±0.15 -
opt. flow 44.51±0.26 / 43.31±0.53 43.76±0.18 / 42.71±0.11 44.22±0.09 / 42.84±0.23 -
color + opt. flow 32.24±0.09 / 32.53±0.16 31.56±0.09 / 31.54±0.15 32.12±0.09 / 32.00±0.28 -

Full frame (GoogLeNet)
color 25.96±0.16 / 26.53±0.36 24.40±0.15 / 24.97±0.07 23.81±0.13 / 24.43±0.16 23.85±0.26 / 24.62±0.32
opt. flow 39.03±0.21 / 37.96±0.21 37.88±0.27 / 37.61±0.23 38.15±0.33 / 37.68±0.26 -
color + opt. flow 24.41±0.35 / 24.25±0.24 23.10±0.14 / 22.86±0.18 23.38±0.16 / 22.87±0.22 -

TABLE V
RECOGNITION WERS WITH MULTIPLE MODALITIES ON SIGNUM DATABASE

Input Modality Iteration
1 2 3 4 5 6

Right hand (VGG-S)
color 6.95±0.12 4.74±0.06 4.66±0.02 4.67±0.03 - -
opt. flow 19.79±0.19 11.00±0.09 9.74±0.02 9.52±0.16 8.31±0.11 9.09±0.05
color + opt. flow 4.66±0.09 4.06±0.03 3.86±0.02 4.01±0.03 - -

Full frame (VGG-S)
color 4.21±0.06 3.93±0.03 4.08±0.07 - - -
opt. flow 6.68±0.12 6.51±0.05 6.20±0.16 6.50±0.04 - -
color + opt. flow 3.17±0.09 2.96±0.07 2.80±0.08 2.95±0.12 - -

Full frame (GoogLeNet)
color 3.96±0.08 3.58±0.13 3.75±0.03 - - -
opt. flow 5.17±0.15 4.72±0.06 4.74±0.28 - - -
color + opt. flow 3.21±0.04 2.98±0.12 3.08±0.19 - - -

TABLE VII
PERFORMANCE COMPARISON OF CONTINUOUS SL RECOGNITION APPROACHES ON RWTH-PHOENIX-WEATHER 2014 AND SIGNUM DATABASES

Model Modality
RWTH-PHOENIX-Weather 2014 SIGNUM

Dev Test Test
del / ins WER del / ins WER del / ins WER

v. Agris et al. [14] hands + face - - - - - 12.7
Gweth et al. [34] full frame + right hand - - - - 2.1 / 1.5 11.9
HMM [11] right hand + face + trajectory 21.8 / 3.9 55.0 20.3 / 4.5 53.0 1.7 / 1.7 10.0
1-Mio-Hands [12] right hand + face + trajectory 16.3 / 4.6 47.1 15.2 / 4.6 45.1 0.9 / 1.6 7.6
CNN-Hybrid [13] right hand 12.6 / 5.1 38.3 11.1 / 5.7 38.8 1.4 / 1.4 7.4
Re-Sign [22] full frame - 27.1 - 26.8 - 4.8
Ours (VGG-S) right hand 9.35 / 4.03 31.72±0.08 8.62 / 3.95 31.51±0.17 1.62 / 0.63 4.66±0.02
Ours (VGG-S) right hand + optical flow 8.77 / 3.72 31.07±0.09 8.47 / 3.25 30.78±0.13 1.09 / 0.60 3.86±0.02
Ours (VGG-S) full frame 11.06 / 4.23 32.34±0.18 10.32 / 4.00 32.30±0.24 1.75 / 0.32 3.93±0.03
Ours (VGG-S) full frame + optical flow 9.51 / 4.37 31.56±0.09 9.09 / 4.27 31.54±0.15 1.07 / 0.23 2.80±0.08
Ours (GoogLeNet) full frame 7.83 / 3.48 23.81±0.13 7.79 / 3.37 24.43±0.16 1.52 / 0.43 3.58±0.13
Ours (GoogLeNet) full frame + optical flow 7.33 / 3.27 23.10±0.14 6.73 / 3.29 22.86±0.18 1.10 / 0.32 2.98±0.12

right hands in SI5 corpus as the initial alignment proposal.
The recognition results after each iteration of optimization are
shown in Table VI.

We observe that the iterative training notably improves the
performance of the recognition system, with more than 25%
relative decrease in WER on both development and test sets.
Our architecture achieves WER of 39.82% on development set
and 39.63% on test, with no notable decrease in performance
on further training iterations. Compared to the results of 45.1%
on development and 44.1% on test set reported in [22], our
results reduce WER of the state-of-the-art by a margin around
5%, which is a relative improvement of more than 10%.

Note that in experiments of multi-signer configurations, our
approach achieves an overall WER of 23.10% on development
and 22.86% on test set, and on those sequences of signer 5, the

WERs on development and test set are 21.28% and 20.48%
respectively. We can observe that the signer independent
recognition is much more challenging than that on multi-signer
settings. Besides, the reduction in training examples can also
partially explain the decreasing performance of the deep neural
architecture.

F. Performance Comparison

Table VII compares the performances of our approach
and the state-of-the-arts. We can observe that our approach
achieves the best performance on both benchmarks. For
systems only using RGB images as inputs, our approach
outperforms the state-of-the-art method on RWTH-PHOENIX-
Weather 2014 database by 2.4% in WER (24.43% vs 26.8%),
which is a relative improvement of 9.0%. On SIGNUM bench-
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Fig. 8. Alignments for training example #1582 from RWTH-PHOENIX-
Weather 2014 database, using color modality (top) and multimodal fusion
scheme (bottom). The x-axis represents time steps of the feature sequence
after temporal pooling with a stride of 4 frames. The y-axis represents gloss
labels, with token #1295 representing “blank”. The blue lines are the most
probable labels that our networks predict at each time step, the red lines
denote the alignment proposal given by our approach, and the green lines show
the ground truth alignment manually annotated. Our modal fusion scheme
exploits complementary visual cues, and provides a more precise alignment.
In contrast, model with color modality fails to make correct inference around
time step 15 and 33, resulting in a worse alignment proposal.

mark, our system learning from color modality, with WER
of 3.58%, also sees an improvement of 1.2% in contrast to
the state-of-the-art with WER of 4.8%. Performance improve-
ments are further gained by introducing multimodal fusion to
our framework. The best result on RWTH-PHOENIX-Weather
2014 dataset sees an improvement of WER from 26.8% to
22.86% on test set, and on SIGNUM corpus, our system
reduces WER of the state-of-the-art from 4.8% to 2.80%.

VI. CONCLUSION

In this paper, we develop a continuous SL recognition
system with recurrent convolutional neural networks on multi-
modal data of RGB frames and optical flow images. In contrast
to previous state-of-the-art methods, our framework employs
recurrent neural networks as the sequence learning module,
which shows a superior capability of learning temporal de-
pendencies compared to HMMs. The scale of training data
is the bottleneck in fully training a deep neural network of
high complexity on this task. To alleviate this problem, we
propose a novel training scheme to make our feature extraction
module fully exploited to learn the relevant gestural labels on
video segments, and keep on benefitting from the iteratively
refined alignment proposals. We develop a multimodal fusion
approach to integrate appearance and motion cues from SL
videos, which presents better spatiotemporal representations
for gestures. We evaluate our model on two publicly available
SL recognition benchmarks, and experimental results present
the effectiveness of our method, where both the iterative
training strategy and the multimodal fusion contribute to a
better representation and the performance improvements.

There are several directions for future work. First, since
gestures consist of simultaneous related channels of informa-
tion, the integration approach of multiple modalities needs
more exploration. It would also be interesting to exploit prior
knowledge on sign language, such as subunits, to help the
model learn from the limited data. Another promising research
path is to develop other sequence learning approach, such as

attention-based methods, to make better use of the temporal
dependencies.
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